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1 Introduction

1.1 Background

Red Blood Cells (RBCs) are known to undergo time dependent biochemical and biophysical changes
during storage, known as storage lesion [1, 2]. Biomolecules, namely 2,3 DPG, are depleted during
storage, resulting in impaired oxygen delivery to tissues [3, 4]. Consequently, while arterial and
venous saturation are maintained and improved after blood transfusion, oxygen delivery at the
microcirculatory level is not [3, 5]. While many studies have demonstrated adverse effects due to
blood transfusion, few have provided a reasonable mechanism by which storage lesion results in
impaired oxygen delivery [1, 3]. Additionally, clinical metrics of blood oxygenation only consider
systemic oxygen saturation and fail to account for changes in oxygen delivery at the microcircula-
tory level [4]. As such, current blood storage and transfusion protocols are inadequate in assessing
tissue oxygenation.

Many studies have demonstrated both time-dependent and time-independent metrics to predict
tissue oxygenation and the survival of transfused blood in clinical settings [1, 2]. However, these
studies have failed to correlate these metrics with tissue oxygenation at the microcirculatory level
[5, 6]. Clearly, there exists a need to develop mathematical models by which relationships between
storage lesion and tissue oxygenation can be inferred. Classical microcirculatory oxygen delivery
models, including the Krogh cylinder (Figure 1.1) have traditionally been used in research settings
to quantify these changes [7, 8]. However, the Krogh cylinder model and updated iterations have
been entirely theoretical and have failed to be implemented to support current research methods
used to quantify changes in oxygen delivery [9, 10].

One method often used to quantify oxygen partial pressure (pO2) in microcirculatory networks
is phosphorescence quenching microscopy (PQM) [11]. An optical method, PQM uses a laser
pulse to determine the amount of oxygen latent within the system. Phosphor dye (e.g. Palladium
Polyporphyrin) is traditionally injected into animal models, and phosphor molecules are excited by
means of a laser [12, 13]. Oxygen present within the volume can quench the laser excited phosphor
molecules, and the rate of decay of phosphor excitation can be used to quantify oxygen partial
pressure by means of the Stern-Volmer equation. However, measurement of oxygen by means of
PQM depletes the oxygen concentration local to the volume of excitation. As such, while local
regions of oxygen can be measured via this method, it is not possible to determine spatial oxygen
maps accurately without additional mathematical methods.

Figure 1.1: Classical Krogh Cylinder Model
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Understanding the hemodynamics in the microcirculation from the perspectives of mass transport
and fluid mechanics is advantageous. Mathematical quantification of tissue oxygen delivery from
systemic parameters, like heart rate, blood pressure, arterial oxygen saturation, venous saturation,
and blood viscosity, can provide evidence of adverse effects due to blood transfusion and be used to
improve upon current blood storage and transfusion protocols. Additionally, these mathematical
models can be used to more precisely treat pathologies associated with changes in blood oxygena-
tion, including malaria, anemia, and polycythemia [14]. The objective of this mathematical model
is to create a means to quantify changes in microcirculatory tissue oxygenation to better study
effects of storage lesion on systemic tissue oxygenation and oxygen delivery. Utilizing data from
animal models of the microcirculation, it is then possible to quantify tissue oxygenation from mea-
sured hemodynamics. In this way, quantitative studies of the effects of mechanical and biochemical
storage lesion on tissue oxygenation and oxygen delivery can be implemented to better understand
adverse effects of blood transfusion.

1.2 Problem Statement

Phosphorescence quenching microscopy is often used to measure local concentrations of oxygen
partial pressure. However, the method itself is poor in resolution and unable to quantify oxygen
spatial maps in animal models as oxygen is quenched during laser excitation of phosphor based
dyes. As such, repeated measurements of oxygen utilizing PQM are unreliable at best in local re-
gions. The objective of this model is to estimate oxygen partial pressure spatial maps from in vivo
measurements to better understand spatial and temporal of oxygen maps in animal models. This
model can then be used in animal models prior to better understand various pathophysiological
phenomena associated with impaired oxygen delivery.

To simplify the situation, axial diffusion in the tissue is neglected. Rather, the problem is divided
into infinitesimally thin blood vessel-tissue disks that are unable to interact with each other. A
system of PDEs is solved for each disk, resulting in a discrete numerical solution of the entire
problem.

2 Methods

2.1 Determination of pO2

The method of phosphorescence quenching microscopy approximates O2 partial pressures (i.e. pO2)
in the microcirculation. However, O2 exists in two states in the blood vessel, freely dissolved in the
plasma, or bound to hemoglobin (Hb). As first principles derive advection-convection diffusion re-
lationships between flow, diffusivity, and oxygen concentration, it becomes necessary to determine
the concentration of oxygen in a single arteriole given the pO2. From fundamental chemical princi-
ples and Henry’s Law, it is well known that the partial pressure of any gas is directly proportional
to its concentration:

pO2 = αO2
CO2

(1)

where αO2
is defined as the Henry’s Law Constant for oxygen. This relationship, however, neglects

the oxygen bound to Hb. We define the Oxygen Saturation SO2
, to be the proportion of oxygen
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bound to Hb over the total Hb O2 carrying capacity. Assuming a Hill Relationship between oxygen
saturation and free oxygen, pO2 is determined as follows:

pO2 = αO2
(SO2

[Hb]CO2
) (2)

where [Hb] is the concentration of Hemoglobin, traditionally experimentally determined by spec-
troscopy, and SO2 is the oxygen saturation, which is assumed to be the systemic oxygen saturation
in this model. Therefore, utilizing systemic parameters and fundamental chemical principles, it is
possible to determine oxygen concentration from oxygen partial pressure.

2.2 Steady State Solution

The diffusion convection equation is defined as follows:

∂c

∂t
= ∇ · (D∇c)−∇ · (~vc) +R (3)

Inside the blood vessel, we make the following assumptions:

1. Steady State: ∂c
∂t = 0

2. Neglect diffusion: ∇ · (~vc) >> ∇ · (D∇c)

3. R = kleakc

4. Pipe Flow: ~v = (0, 0, vz(r))

We can therefore simplify the problem as follows:

−vz
∂c

∂z
= kleakc (4)

with the following boundary conditions:

c(0) = OIN2

c(L) = OOUT2

(5)

where L is the length of the blood vessel.

Utilizing the first boundary condition, c(0) = OIN2 , the solution to the differential equation is as
follows:

cin(z) = OIN2 exp

(
− k

vz
z

)
(6)
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Solving for kleak utilizing the boundary condition c(L) = OOUT2 , we find:

OOUT2 = OIN2 exp

(
− kleak

vz
L

)
(7)

kleak =
vz
L
ln

∣∣∣∣ OIN2

OOUT2

∣∣∣∣ (8)

Substituting into equation (6), we find:

cin(z) = OIN2

(
OOUT2

OIN2

)z/L
(9)

To determine the oxygen profile in the tissue, we simplify the problem into a series of N radial dif-
fusion problems, each with initial condition r(0) = Φcin(x) for all x/leqL, where Φ is the Partition
Coefficient. In this schema, we consider the following assumptions:

1. Steady State: ∂c
∂t = 0

2. Neglect Convection: ∇ · (~vc) << ∇ · (D∇c)

3. Neglect Axial Diffusion: ∂c
∂z = 0

In this schema, we obtain the following equation:

D
∂2c

∂r2
+
D

r

∂c

∂r
+ kconsc = 0 (10)

where D is the diffusivity of oxygen in the tissue and kcons is the consumption rate of oxygen by
the tissue. We then define the following boundary conditions:

cout(R) = Φcin(x) (11)

Cout(∞) = 0 (12)

where R is the radius of the vessel.
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We then rewrite equation (10) as follows:

r2 ∂
2c

∂r2
+ r

∂c

∂r
+

(
r2

√∣∣∣∣kconsD

∣∣∣∣2 − 02

)
c = 0 (13)

Notice that because kcons < 0 and D > 0, the solution is the Modified Bessel Equation of order
n = 0. As such, the solution must have the following form:

cout(r) = AI0

(√
−kcons

D
r

)
+BK0

(√
−kcons

D
r

)
(14)

Assuming that |c(r)| <∞, we can claim that A = 0. Solving for B utilizing the boundary conditions
yields:

B =
Φcin(x)

K0

(√
−kcons

D R

) (15)

Therefore,

cout(r, x) =
Φcin(x)

K0

(√
−kcons

D R

)K0

(√
−kcons

D
r

)
(16)

To determine kcons, we utilize the principles of mass balance. Assuming that all oxygen entering
the tissue is consumed, we can determine kcons as follows:

kcons = Φkleak (17)

2.3 Non-Steady State Solution: Inside the Blood Vessel

The diffusion convection equation is defined as follows:

∂c

∂t
= ∇ · (D∇c)−∇ · (~vc) +R (18)
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We make the following assumptions:

1. Neglect diffusion: ∇ · (~vc) >> ∇ · (D∇c)

2. R = kleakc

3. Pipe Flow: ~v = (0, 0, vz)

4. Assume that the input and output oxygen profiles sinusoidally with frequency equivalent to
the heart rate.

We are therefore solving the problem:

∂c

∂t
+ vz

∂c

∂z
= kleakc (19)

Boundary Conditions:

c(0, t) = sin

(
πHR

30
t

)
+OIN2 = f(t) (20)

c(L, t) = sin

(
πHR

30
t

)
+OOUT2 = g(t) (21)

Utilizing the method of characteristics, we parametrize a surface q(γ, s) to define the solution
c(z, t).

∂t

∂s
(γ, s) = 1 (22)

∂z

∂s
(γ, s) = vz (23)

∂q

∂s
(γ, s) = kleakq (24)

BC:

t(γ, 0) = γ (25)

z(γ, 0) = vz (26)

q(γ, 0) = kleakq (27)
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Solutions:

t(γ, s) = γ + s (28)

z(γ, s) = vzs (29)

q(γ, s) = c(γ)ekleaks (30)

Solving for γ(z, t) and s(z, t):

s =
z

vz
(31)

γ = t− z

vz
(32)

Solution is therefore:

c(z, t) = f

(
t− z

vz

)
(33)

Solve for kleak utilizing the other BC:

kleak =
vz
L
ln

∣∣∣∣f(t− L/vz)
g(t)

∣∣∣∣ (34)

Substituting for kleak

c(z, t) = f(t− z/v)

(
g(t)

f(t− L/v)

)z/L
(35)
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2.4 Non-Steady State Solution: Outside the Blood Vessel

The problem in the radial direction in the tissue is defined as follows:

∂c

∂r
= D

∂2c

∂r2
+
D

r

∂c

∂r
+ kc (36)

where k = Φkleak(t = 0), as determined in the axial solution above.

Boundary Conditions:

c(R, t) = Φcin(z, t) = hl(t) (37)

c(∞, 0) = 0 (38)

where l ∈ Z. In this case, we discretize the problem in z. Therefore, we assume a single time
dependent distribution for each zl, hl(t).

Initial Condition

c(r, 0) = Φcin(z, 0)10(R−r)/4R = fl(r) (39)

where l ∈ Z for each zl.

Step 1: Solve the Steady State Problem with BCs shown above. The solution to this problem is
b(r, t).

D
∂2b

∂r2
+
D

r

∂b

∂r
+ kb = 0 (40)

We know this solution:

b(r, t) = A(t)K0

(√
− k
D
r

)
(41)
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Substituting the BC yields:

A(t) =
hl(t)

K0

(√
− k
DR

) (42)

The solution is therefore,

b(r, t) =
hl(t)

K0

(√
− k
DR

)K0

(√
− k
D
r

)
(43)

Step 2: Define v(r, t) = c(r, t)− b(r, t) and determine the problem for v(r, t)

∂

∂t
(v + b) = D

∂2

∂r2
(v + b) +

D

r

∂

∂r
(v + b) + k(v + b) (44)

∂v

∂t
= D

∂2v

∂r2
+
D

r

∂v

∂r
+ kv − ∂b

∂t
(45)

as

D
∂2b

∂r2
+
D

r

∂b

∂r
+ kb = 0 (46)

Initial Conditions:

v(r, 0) = c(r, 0)− b(r, 0) = fl(r)− b(r, 0) = f̄l(r) (47)

Boundary Conditions:

v(R, t) = c(R, t)− b(R, t) = hl(t)− hl(t) = 0 (48)

v(∞, 0) = 0 (49)

|v(r, t)| <∞ (50)
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Step 3: Extract the eigenfunctions and eigenvalues from the homogeneous equation for v(r, t)

∂v

∂t
= D

∂2v

∂r2
+
D

r

∂v

∂r
+ kv (51)

v(r, t) = φ(r)g(t) (52)

φg′ = Dφ′′g +
D

r
φ′g + kφg (53)

g′

g
=
Dφ′′ + D

r φ
′ + φ

φ
= −λ (54)

We now only need to solve the eigenfunction equation for φ:

Dφ′′ +
D

r
φ′ + (k + λ)φ = 0 (55)

Case 1: lambda < −k

φ(r) = AI0

(√
−k + λ

D
r

)
+BK0

(√
−k + λ

D
r

)
(56)

Substituting in Boundary Conditions yields A = B = 0

Case 2: λ = −k

Dφ′′ +
D

r
φ′ = 0 (57)

φ(r) = Aln|r|+B (58)

Substituting in Boundary Conditions yields A = B = 0
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Case 3: λ > −k

φ(r) = AJ0

(√
k + λ

D
r

)
+BY0

(√
k + λ

D
r

)
(59)

Substituting in Boundary Conditions yields B = 0. Therefore, the eigenfunctions take the form:

φn(r) = AnJ0

(√
k + λn
D

r

)
(60)

To find the eigenfunctions, substitute the other boundary condition:

AnJ0

(√
k + λn
D

R

)
= 0 (61)

If An = 0, the solution is trivial. Therefore,

J0

(√
k + λn
D

R

)
= 0 (62)

Define αn be the roots of the Bessel function J0(x). Thus, the eigenvalues are numerically deter-
mined as:

λn = D

(
αn
R

)2

− k (63)

In summary,

φn(r) = AnJ0

(√
k + λn
D

r

)
(64)

λn = D

(
αn
R

)2

− k (65)
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Step 5: Exploiting the Sturm-Liouville theorem, we write the solution v(r, t) as an infinite series
of eigenfuncitons:

v(r, t) =

∞∑
n=0

an(t)φn(r) (66)

Substituting into the original differential equation yields:

∞∑
n=0

dan
dt

φn(r) =

∞∑
n=0

(
Dφ′′ +

D

r
φ′ + kφ

)
an(t)− ∂b

∂t
(67)

As φn(r) = −λnφn(r)

∞∑
n=0

(
dan
dt

+ λnan(t)

)
φn(r) = −∂b

∂t
(68)

We do the same thing for −∂b∂t :

∞∑
n=0

(
dan
dt

+ λnan(t)

)
φn(r) =

∞∑
n=0

cn(t)φn(r) (69)

To solve for bn(t), we exploit the orthogonality of the Bessel Functions:

∫ ∞
0

φn(r)φm(r)r

√
− k
D
dr = 0,m 6= n (70)

Therefore,

cn(t) = −∂b
∂t

∫∞
R
φn(r)rdr∫∞

R
φ2
n(r)rdr

(71)
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To find an(t), we solve the following differential equation:

dan
dt

+ λnan(t) = cn(t) (72)

as both λn and cn(t) are known, it is then possible to find an(t), as shown in the Numerical Meth-
ods section.

To find the initial condition, we perform again exploit the orthogonality of eigenfunctions:

an(0) =

∫∞
R
f̄(r)φn(r)rdr∫∞
R
φ2
n(r)rdr

(73)

2.5 Numerical Methods

Determination of the Eigenvalues λn. To determine the eigenvalues, it was necessary to find the
roots αn of the Bessel Function of the First Kind J0(r) . To do so, Halley’s method was employed.
Let J ′0(r) be the numerically determined central finite difference of the Bessel Function of the First
Kind and J ′′0 (r) be the numerically determined central difference as shown:

J ′0(r) =
dJ0(r)

dr
=
J0(r + ∆r)− J0(r −∆r)

2∆r
(74)

J ′′0 (r) =
J0(r + ∆r)− 2J0(r) + J0(r −∆r)

∆r2
(75)

Utilizing (74) and (75) , the roots, αn were iteratively determined as follows:

αn+1 = αn −
2J0(αn)J ′0(αn)

2[J0(αn)]2 − J0(αn)J ′′0 (αn)
(76)

for a sufficiently close guess αn. Depending on the value of n, the iteration in (76) is repeated to
find a sufficient number of roots.

Determination of an(t). The coefficients of the solution an(t) were determined utilizing Euler’s
method with a sufficiently small step size ∆t to ensure convergence. From (72), we find that

an(t+ ∆t) = an(t)−
(
λnan(t) +

∂b

∂t

)
∆t (77)
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Determination of an(0) and cn(t). To determine an(0) and cn(t) from (73) and (71), respectively,
the trapezoidal method of numerical integration was employed. As such, the integrals in (73) and
(71) were evaluated as follows. Let y(t) be some function that needs to be integrated. As such:

∫ yn

y0

y(t)dt ≈
N∑
k=1

yk+1 − yk
2

∆t (78)

3 Results

All solutions to the found equations were graphed in Matlab R2015 (Mathworks, 2015). Plot
generation code is found in the appendix.

3.1 Steady State Solution

Axial Distribution of Oxygen Inside the Blood Vessel: To best understand the non-linear time
dynamics of the model, the steady state solution was first analyzed. The oxygen saturation profile
inside the blood vessel Cin(z) is represented in Figure 3.1. This profile demonstrates the relevance
of length scale when analyzing the oxygen distribution in the model along z. At small length scales
(i.e. on the scale of microcirculatory vessels), we observe a pseudo-linear dependence of oxygen
concentration on z. However, first order leak kinetics impose an exponential dependence on z, as
demonstrated in Figure 3.1. Additionally, Figure 3.1 demonstrates a major limitation of the model
as O2 concentration does not vary with radius, as assumed. However, in the context of this model,
the distribution of red cells in microvessels validates this assumption.

Figure 3.1: Comparing length scales for the axial steady state model

Radial Distribution of Oxygen in the Tissue: By conservation of mass, the solution of oxygen
inside the blood vessel was used to determine the boundary condition of [O2] in the surrounding
tissue. As demonstrated in the Methods, the spatial dynamics of this oxygen distribution can be
approximated using a Modified Bessel Function of the Second Kind. This graphical solution can
be seen in Figure 3.2 below. An important aspect of this model is the propagation of the axial
concentration gradient away from the center of the blood vessel, seen at a distance of 80 µm from
the vessel. Additionally, it is important to note the limitation of this graphical representation.
A more accurate representation of this model would show the oxygen profile at any distance and
angle from the plane that is represented here.
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Figure 3.2: Steady State Oxygen profile in tissue surrounding the blood vessel

A complete representation of the model involves a numerical combination of the models solved
both inside and outside the blood vessel, as demonstrated in Figure 3.3. Data from inside the
blood vessel and the surrounding tissue were combined to form a clear plane. This plane includes
the vessel and tissue on either side. To do this, the data matrix derived for the tissue was rotated
180 degrees, then the rotated tissue matrix, vessel data matrix, and non-rotated tissue matrix were
combined to form a this final matrix. Graphically, this is seen below in Figure 3.3.

Figure 3.3: Steady State Solution

Determination of Oxygen Spatial Map in a Microcirculatory Network This simplified limitation
was used to verify some of the properties seen in biological systems and in the context of microcir-
culatory networks. Namely, we wanted to utilize this steady state model to see the effects of having
two vessels running parallel through a tissue. In order to implement this, we made the assumption
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that this system was linear, and thus abides by superposition. In our model, superposition states
that the effect on the oxygen concentration at some point in the tissue was the sum of all the
effects of the surrounding vessels. As such, we can partially overlap two data matrices and then
add the terms together. We also implemented a boundary condition that a single blood vessel can
only supply oxygen to tissue and not to the interior of an adjacent blood vessel.

Computationally, a data matrix for the tissue was lengthened to give data up to 200µm away from
the tissue. Then the data matrix was copied and rotated 180 degrees. Once an overlap length was
determined, the two matrices were added together. Anything between the two local maxes, i.e. the
spots where the tissue met the vessel on either data matrix, was kept, and the rest was removed (a
digital xor operation). Finally, this new data matrix was combined with two vessel matrices and
two tissue matrices to produce the final data matrix which was graphed using the mesh function
on MATLAB. This graph can be seen below in Figure 3.4.

This figure verifies what is expected from the biology of the system. Oxygenation of the tissue
between two adjacent blood vessels receives ample O2 from either vessel. Once again, a limitation
of this representation of the model is that it can only show the concentration across a plane that
intersects the blood vessels. Blood vessels can only be added in planes in which they are viewed.
Representing, for example, a third blood vessel underneath the two shown is not possible, and thus
represents a limitation of the graphical representation of the model.

Figure 3.4: Steady State Microcirculatory Network Solution

3.2 Non-Steady State Solution

Single Vessel Non-Steady State Solution The complete non-steady state solution was plotted over
time for a single blood vessel. Note that the frequency of oscillation is proportional to the heart rate
of the animal model during data collection. Results are summarized in Figure 3.5. The non-steady
state solution demonstrates a phase delay between propagation of the pressure wave and tissue
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oxygenation, a phenomenon that demonstrates a degree of constant oxygenation independent of
the heart rate. The complete non-steady solution was then recorded using QuickTime Player’s
screen recording option. The low resolution can be attributed to the computational intensity
associated with determining the analytical solution.

Figure 3.5: Non-Steady State Solution at Systole (left) and Diastole (right)

Non-Steady State Microcirculatory Network Results for a non-steady state microcirculatory net-
work are summarized in Figure 3.6. As expected, tissue between two oxygen sources has higher
oxygenation than any section of tissue with only one oxygen source. Once again, the crest peaks
a little after 60 mmHg and minimizes at a little below 60 mmHg.

Figure 3.6: Non-Steady State Microcirculatory Network

Variation of the Tissue Oxygen Consumption Rate: The rate of tissue oxygen consumption, k, was
modulated to investigate the effects of hypoxia and hyperoxia in the model developed by increasing
and decreasing it by an order of magnitude. Results are summarized in Figures 3.8 and 3.7.

These results exemplify the sensitivity of the variables used, in addition to demonstrating the high
degree of control that biological systems have with regard to oxygen consumption. For high oxygen
consumption, which models hypoxic conditions, we see oxygen depletion of cells radially distant
from the blood vessel edge. Likewise in hyperoxic conditions, modeled by low oxygen consumption,
we notice accumulation of oxygen in the tissue, demonstrated by the flaring at either end of the
blood vessel.
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Figure 3.7: Modeling hypoxia: High Oxygen Consumption

Figure 3.8: Modeling hyperoxia: Low Oxygen Consumption

4 Discussion

4.1 Steady State Solution

The principal findings of this model are that oxygen exponentially decays axially and radially
following a Bessel Function of the First Kind. In addition, this model demonstrates that cells local
to microcirculatory networks have the ability to finely tune their oxygen consumption, ensuring
equal distribution of oxygen throughout the entire local tissue area. With respect to the steady
state solution, this model demonstrates that oxygen decay is pseudo-linear, namely due to the
small length scale. However, as length scale increases (i.e. for larger networks) the exponential
decay of oxygen becomes more relevant (Figure 3.1). However, oxygen diffusion outside the blood
vessel likely does not follow first order leak kinetics. As such, decay is likely to be slower than
expected, causing changes which are likely to propagate radially down the tissue and change the
oxygen spatial map.

As demonstrated in the steady state solution, the radial oxygen profile decays following a Modified
Bessel Function of the Second Kind, due to the fact that the cells local to microvessels act as
oxygen sinks. If for instance, a similar model was being used to model oxygen diffusion outside
plant networks, the kinetics of the problem would vary drastically. The shape of the modified
Bessel Function of the Second Kind mimics that of exponential decay and supports the idea that
the problem is bounded, in addition to the fact that oxygen concentration decays exponentially
as radius increases. Note that this is entirely an artifact of how the problem was defined. The
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modified Bessel Function of the Second Kind is unbounded towards the limit as r approaches 0.
For this reason, the boundary conditions were shifted, to ensure that a non-trivial solution exists.

A model of the oxygen map of a microcirculatory network was then created namely due to super-
position. In addition to demonstrating the utility of having an effective geometry to oxygenate an
entire tissue region, this model also demonstrates the utility of a countercurrent exchange system.
As oxygen concentration is maximized between the two blood vessels, relative to either side of it,
oxygen flux is also maximized. In this schema, if one of the blood vessels is an oxygen sink, a ven-
uole, then flux is maximized in the region between the oxygen source, arteriole, and the venuole,
demonstrating how countercurrent exchange systems provide a useful means of solute and heat
transport. In addition, it is entirely possible to create a microcirculatory network with a unique
geometry so as to induce a ”hypoxic pocket” of tissue. With this schema in mind, it is then possible
to calculate the optimal distance to maximize delivery of oxygen. More specifically, the distance
at which a hypoxic pocket ceases to exist represents the maximum distance that any two blood
vessels may be away from each other to maximize oxygen delivery to a given area of tissue.

One disadvantage to the steady state model, however, is the lack of a theoretical limit of oxygen
transport, known as the Krogh radius. As later discussed, this phenomenon becomes more apparent
in the non-steady state model.

4.2 Non-Steady State Solution

In addition to the points of analysis mentioned, the non-steady state model provides a means to
analyze tissue oxygenation with regard to the systolic and diastolic phases of the cardiac cycle, or
their equivalents at the microcirculatory level. In theory, tissue oxygenation should be minimized
during diastole. However, this model demonstrates a phase difference between axial propagation
of oxygen and the frequency of systole and diastole. This phase difference results in a constant
level of tissue oxygenation independent of the heart rate, a phenomenon that is able to explain
many mechanisms of vasocontrol at the microcirculatory level. For instance, vasomotion, the
spontaneous change in vascular tone independent of heart rate, would result in local changes in
the tissue oxygenation based on convective transport in a manner very similar to those due to the
cardiac cycle. However, as demonstrated in this model, the phase delay between tissue oxygenation
and other frequency dependent modulations of convective oxygen transport results in a relatively
static level of oxygen radially downstream.

Another significant result of this model is the development of a theoretical limit of oxygen transport,
known as the Krogh radius. After a certain point, approximately 100 µm away from the vessel
edge, the solution becomes unstable and begins to flare. While this can be viewed as a limitation
of the model, the point at which oxygen is minimized radially represents the theoretical limit
of oxygen transport, a limit classically known as the Krogh radius. One major advantage of
the non-steady state model is the appearance of this phenomenon. While the kinetics of oxygen
transport, consumption, and diffusion remain relatively similar between models, this theoretical
limit provides additional information of microcirculatory studies and can help provide a more
complete mechanistic understanding of the effects of variations in the 3D spatial configuration of
blood vessels on tissue oxygenation.

The model is also advantageous in its ability to qualitatively explain the deleterious effects of
hypoxia and hyperoxia on tissue oxygenation at the microcirculatory level. Under both high and
low oxygen consumption rates, hypoxia and hyperoxia respectively, we observed drastic changes in
local oxygen concentrations. In the case of hypoxia, tissue radially farther from the blood vessel
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edge is entirely depleted of oxygen. In hyperoxia, accumulation of oxygen includes reactive oxygen
species, so it is equally harmful to cells.

One major disadvantage in the model involves the assumption that disks of vessel-tissue systems
cannot interact with each other. In other words, the neglecting of axial diffusion in the model is
likely to limit the accuracy of the model radially downstream from the vessel edge. Future directions
would include incorporation of axial diffusion to better understand phase effects of oxygen diffusion
as a function of frequency dependent changes in convective diffusion.

5 Conclusion

The mathematical model presented allows for the determination of local changes in oxygen spatial
maps as a function of the cardiac cycle and frequency dependent modulations in oxygen convection
in microcirculatory networks. The results presented, in addition to validating classical microcircu-
latory theories of phenomena like hypoxia, hyperoxia, and vasomotion, provide a means to better
understand changes in oxygen concentration at the microcirculatory level as a function of sys-
temic hemodynamic parameters. Future directions include further numerical complications of the
model in order to better understand changes in the phase of oxygen diffusion relative to frequency
dependent modulations in oxygen convection.
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A Table of Parameters

Figure A.1: Table of Relevant Parameters

B Matlab Code

Contents

• Numerical Sol’n of Steady State Model

• O2 Conc Profile Function

• Numerical Sol’n of Non - Steady State Model

• Axial Problem

• Radial Problem

• Ctissue function

• myeig Function

• besselzero Function

• findzero Function

• an initial Function

• a n Function

Numerical Sol’n of Steady State Model

%%%%%%%% SOLN FOR VESSEL

O2in = 60; %mmHg
O2out = 55; %mmHg
L = 100; %µm
conc = zeros(1,100);
for z = 1:100; %10000 to see the decay non linear
conc(z) = O2in * (O2out / O2in)^(z / L);
end
conc(1) = 60;

%%%%%%%% SOLN FOR TISSUE
iot = .5;
x=1;
D = 1.75e-5;
alph = 3e-5;
r = 80;
delr = 1;
conc = zeros(1,80);
conc(1) = 60 * alph;
conc(2) = conc(1);
k=.5;

%collect data using for loop
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for n = 2:79;
conc(n+1) = (1/(1+(delr/r))*((2 + (delr/r) - ...

(delr^2*(k^(1/3)/D))*conc(n)^(1/3))-conc(n-1)));
end

%plot the concentration along the axis
%plot(1:80,conc)
%viewing just the inside of the vessel
% conc = [conc;conc;conc;conc];
% surf(conc)
% title(’Oxygen Conc. down the length of the vessel’)
% xlabel(’z (distance from start of the vessel µm)’)
% zlabel(’[O_2]’)

%viewing everything outside the vessel
mesh(O2concProfile(conc))
xlabel(’distance from vessel’)
ylabel(’length vessel’)
zlabel(’[O_2]’)

title(’[O_2] profile in surrounding tissue’)

O2 Conc Profile Function

[out] = @O2concProfile(cin)
r = (21:1:100);
x = (1:1:100);
out = zeros(length(x),length(r));
phi = 0.5;
D = 1.75e-5; %cm^2/s
R = 20; %µm
v = 20; %mm/s
L = 100; %µm
alph = 3e-5; %conversion factor
O2in = 60 * alph;
O2out = 55 * alph;
k_leak = (v/L)*log(O2in/O2out);
k_cons = 0.5*k_leak;
for i = 1:length(x)

for j = 1:length(r)
out(i,j) = phi*cin(i)*(sqrt(-(k_cons/D))*R)/(sqrt(-(k_cons/D))*r(j));

end
end

Numerical Sol’n of Non - Steady State Model

%%Constant Definition
v = 20e-3; % m/s
d = 40e-6; % m
R = d/2; % radius
L = 100e-6; % m
D = 18e-10; % m^2/s
o2in = 60*364/815; % mol/m^3
o2out = 55*364/815; % mol/m^3
HR = 450; % bpm
Phi = 0.5; % partition coefficient

Axial Problem

% Boundary Conditions
fax = @(t) sin(pi.*HR.*t./30)+o2in;
gax = @(t) sin(pi.*HR.*t./30)+o2out;

% Solution
cin = @(z,t) (fax(t - (z./v)).*((gax(t)./fax(t - (L./v)))).^(z./L)).*(815/364);
step = 7.5/1000;
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[Z,T] = meshgrid(0:(L/100):L,0:step:5);
CIN = cin(Z,T);
% surf(Z,T,CIN)

Radial Problem

% For this iteration, we are just testing, so I will assume z = 0. To
% generate the image plot in 4D, I will do it for all z

% Miscellaneous Necessary parameters
% Use k at t =0 to approximate k
sc = 0.1; %scaling factor for variation in k
k = log(gax(0)/fax(-L/v))*(v/L)*Phi * sc;
Rdom = linspace(R,5*R,1000); % Domain of the problem from R to 5R

% Boundary Conditions
hout = @(z,t) Phi*cin(z,t);

% Initial Condition
fout = @(r,z) Phi.*cin(z,0).*10.^((R-r)./(4*R));
fbar = @(r,z) fout(r,z).*b(r,z,0);

% First 100 Roots of the Bessel Function of the first kind
alpha = besselzero(0,100,1);

% Eigenvalues:
lambda = D.*((alpha./R).^2)-k;
mlam = max(lambda);
lambda = lambda./max(lambda);

% Eigenfunctions
eigsoln = myeig(k,D,lambda,Rdom);
rint = linspace(R,1,10000);
eigint = myeig(k,D,lambda,rint);

% To define nonhomogeneous term, we need to take time derivative of cin
shift = sqrt(-k/D);
syms t
hout_sym = sym(hout);
dhout = diff(hout_sym,t);
dhout = matlabFunction(dhout);
clear t;
b = @ (r,z,t) (besselk(0,shift*r)./besselk(0,shift*R)).*hout(z,t);
Q = @(r,z,t) (besselk(0,shift*r)./besselk(0,shift*R)).*dhout(t,z);

% Calculating Integral for coefficients bn(t) (known as beta_n in scratch
% paper) - Simplified by separating out cin(z,t) from the equation
beta = get_beta(k,lambda,R,D,eigint,rint);

% To determine the solution for all space and all time
% Notes: r = Rdom for the input
Zdom = linspace(0,L,10);
Rdom = linspace(R,50*R,10);
tin = 0:step:5;
final_out_smallk = ones(length(Zdom),length(Rdom),length(tin));
scaling = 0.009944751089163;
count = 0;

for ii = 1:length(Zdom)
dummy_z = Zdom(ii);
count = count+1;
disp(count)
for jj = 1:length(Rdom)

dummy_r = Rdom(jj);
an_init = an_initial(Phi,cin,R,eigint,rint,lambda,dummy_z,k,D);
an_all = a_n(dummy_z,tin,lambda,beta,dhout,an_init);
tvec_cout = ctissue(k,lambda,D,an_all,R,hout,Phi,cin,dummy_r,dummy_z,tin);
tvec_cout = tvec_cout.*scaling;
final_out_smallk(ii,jj,:) = tvec_cout;
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end
end

Ctissue function

out = @ctissue(k,lambda,D,an_all,R,hout,Phi,cin,r,z,tin)

shift1 = sqrt(-k/D);
b = @ (r,z,t) (besselk(0,shift1*r)./besselk(0,shift1*R)).*hout(z,t);

sum_vec = zeros(length(tin),1);

for ii = 1:length(lambda)
shift = sqrt((k+lambda(ii))/D);
an = an_all(:,ii);
phinr = besselj(0,shift*r);
dummy = phinr.*an;
dummy = dummy.’+ b(r,z,tin);
sum_vec = sum_vec + dummy.’;

end

out = sum_vec’;

myeig Function

A = @myeig(k,D,lambda,r)

eigmat = zeros(length(r),length(lambda));

for ii = 1:length(lambda)
val = (k + lambda(ii))/D;
val = abs(val);
val = sqrt(val);
val = val.*r;
val = besselj(0,val);
eigmat(:,ii) = val;

end

A = eigmat;

besselzero Function

x=@besselzero(n,k,kind)

k3=3*k;

x=zeros(k3,1);

for j=1:k3

% Initial guess of zeros
x0=1+sqrt(2)+(j-1)*pi+n+n^0.4;

% Do Halley’s method
x(j)=findzero(n,x0,kind);

if x(j)==inf
error(’Bad guess.’);

end

end

x=sort(x);
dx=[1;abs(diff(x))];
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x=x(dx>1e-8);

x=x(1:k);

findzero Function

x=@findzero(n,x0,kind)

n1=n+1; n2=n*n;

% Tolerance
tol=1e-12;

% Maximum number of times to iterate
MAXIT=100;

% Initial error
err=1;

iter=0;

while abs(err)>tol & iter<MAXIT

switch kind
case 1

a=besselj(n,x0);
b=besselj(n1,x0);

case 2
a=bessely(n,x0);
b=bessely(n1,x0);

end

x02=x0*x0;

err=2*a*x0*(n*a-b*x0)/(2*b*b*x02-a*b*x0*(4*n+1)+(n*n1+x02)*a*a);

x=x0-err;
x0=x;
iter=iter+1;

end

if iter>MAXIT-1
warning(’Failed to converge to within tolerance. ’,...

’Try a different initial guess’);
x=inf;

end

an initial Function

out = @an_initial(Phi,cin,R,eigint,rint, lambda, z,k,D)

dem = zeros(length(lambda),1);

for jj = 1:length(lambda)
eigdem = eigint(:,jj);
eigdem = eigdem.*eigdem;
predem = eigdem.*rint.’;
predem = trapz(rint,predem);
dem(jj) = predem;

end

shift = sqrt(-k/D);
hout = @(z,t) Phi*cin(z,t);
fout = @(r,z) Phi.*cin(z,0).*10.^((R-r)./(4*R));
b = @ (r,z,t) (besselk(0,shift*r)./besselk(0,shift*R)).*hout(z,t);
fbar = @(r,z) fout(r,z).*b(r,z,0);
fint = fbar(rint,z);
fint = fint.’;
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num = zeros(length(lambda),1);

for ii = 1:length(lambda)
eig = eigint(:,ii);
prenum = eig.*fint;
prenum = prenum.*rint.’;
prenum = trapz(rint,prenum);
num(ii) = prenum;

end

ano = num./dem;

out = ano;

a n Function

out = @a_n(z,tin,lambda,beta,dhout,an_init)

num = length(lambda);
step = tin(2)-tin(1);

out = zeros(length(tin),num);

for ii = 1:num
vec = zeros(size(tin));
vec(1) = an_init(ii);
for jj = 1:(length(tin)-1)

vec(jj+1) = (beta(ii)*dhout(z,tin(jj)) - lambda(ii)*vec(jj))*step + vec(jj);
end
out(:,ii) = vec.’;

end
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